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Cost-Effective Designs for Linkage Disequilibrium Mapping
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Susan K. Service,' Lodewijk A. Sandkuijl,*" and Nelson B. Freimer'

'Center for Neurobehavioral Genetics, University of California at Los Angeles, Los Angeles; and *Department of Medical Statistics, Leiden
University Medical Center, Leiden, The Netherlands

The current development of densely spaced collections of single nucleotide polymorphisms (SNPs) will lead
to genomewide association studies for a wide range of diseases in many different populations. Determinations of
the appropriate number of SNPs to genotype involve a balancing of power and cost. Several variables are important
in these determinations. We show that there are different combinations of sample size and marker density that can
be expected to achieve the same power. Within certain bounds, investigators can choose between designs with more
subjects and fewer markers or those with more markers and fewer subjects. Which designs are more cost-effective
depends on the cost of phenotyping versus the cost of genotyping. We show that, under the assumption of a set
cost for genotyping, one can calculate a “threshold cost” for phenotyping; when phenotyping costs per subject are
less than this threshold, designs with more subjects will be more cost-effective than designs with more markers.
This framework for determining a cost-effective study will aid in the planning of studies, especially if there are

choices to be made with respect to phenotyping methods or study populations.

There is much current interest in the use of SNPs to
conduct genomewide association studies of common dis-
eases. The density of SNPs that will be required for such
studies remains the subject of intense debate. The de-
termination of the optimal number of SNPs for a par-
ticular study involves a balance between obtaining ad-
equate power to detect association and keeping the cost
of the study at a realistic level. The issue of cost in ge-
notyping is vastly more important for association studies
than for linkage studies, because the number of markers
used in association studies is so much greater. For ex-
ample, if one wished to double the density of microsat-
ellite markers for a genomewide linkage study (e.g., from
400 to 800), the increase in cost would be trivial com-
pared with that incurred in doubling the density of SNPs
for a genomewide association study (e.g., from 40,000
to 80,000).

The power of an association study depends on several
variables, which fall into two categories. The first cat-
egory consists of known variables determined by the
study design, including the number of markers geno-
typed and the sample size. The age and pattern of growth
of the population under study are central determinants
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of the power of genomewide association studies; for
some populations, such as isolates with detailed ge-
nealogic records, these may be considered “known” var-
iables. The second category consists of variables that are
unknown, such as the magnitude of the difference be-
tween cases and controls in the frequency of the SNP
allele associated with disease. In determining the optimal
strategy for balancing cost and power of an association
study, it is useful to examine the impact of making dif-
ferent choices for the known variables, on the basis of
particular assumptions about the value of the unknown
variables. We present here a simple framework for con-
ducting such evaluations.

The choice of study population affects the power and
cost of association studies, in that populations in which
extensive linkage disequilibrium (LD) surrounds disease-
susceptibility variants will require genotyping fewer
markers than samples with less LD. Indeed, the discovery
that, even in the most outbred populations, the genome
is organized in blocks of conserved haplotypes has im-
portant implications for the cost of genotyping, and it
is a major rationale for the “Hap-Map” project, which
is aimed at identifying each of these blocks. For example,
the initial proposal for genomewide association studies
by Risch and Merikangas (1996) envisioned genotyping
about one million SNPs per study. Consider one of their
scenarios (a genotype relative risk [GRR] of 2.0 and a
disease variant with frequency of 0.10); this situation
would require genotyping 6935 trios for adequate power,
using a transmission/disequilibrium test. Under the as-
sumption of a cost of $0.10 per genotype (which is near
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the low end of currently obtainable genotyping costs),
this genotyping study would cost ~$210 million. If one
simply extrapolates for the entire genome—from the
published haplotype-block information on chromosome
21 (Patil et al. 2001)—one would require 422,500 SNPs
for complete genome coverage, for a much-reduced cost
of ~$88 million. Many fewer numbers of SNPs may be
needed in isolated populations, particularly in recently
founded isolates, in which LD may extend for consid-
erable distances (Service et al. 2001; Hall et al. 2002).

We show here a simple framework for evaluating the
costs of case-control association studies designed to
achieve a stated power. This framework is based on mod-
eling the decay of LD around a disease locus as a func-
tion of the genetic distance between the associated
marker allele and the disease locus and of the number
of generations since the mutation was introduced into
the population. By specifying the depth of a study pop-
ulation (i.e., the number of generations since its found-
ing), it is possible to estimate the expected value of the
LD coefficient (D’) for various map distances. Using the
estimate of D'—together with assumptions about the fre-
quency of the disease allele, the prevalence of the disease,
the GRR associated with various genotypes, and the
frequency of the associated SNP allele in the control
sample—one can calculate the power of a specific sample
size, and one can calculate the sample size necessary to
detect a signal at a specified power. In calculating the
expected value of D', the present analysis does not con-
sider other factors, such as SNP mutations, that may
affect the decay of LD with genetic distance. This simple
analysis is not intended to serve as a primer for esti-
mating the power of association studies per se but rather
as a heuristic device to demonstrate how one may con-
sider, for a particular study population, two solutions
to the problem of balancing cost and power: increasing
the density of SNPs or increasing the size of the study
sample. In addition to using values of D' based on the-
oretical expectations, we have applied this methodology
to estimates of D' that were empirically derived from an
outbred population (Reich et al. 2001).

Methods

We modeled the decay of LD around a disease locus as
a function of the genetic distance between the associated
marker allele and the disease locus and of the number
of generations since the mutation was introduced into
the population. Given a number of genotyped SNP
markers (M), the average genetic distance from a disease-
susceptibility locus to the nearest marker (assuming the
worst-case scenario of the disease locus being located
midway between two markers) can be found by 3,673/
(2-M), where 3,673 is the length of the genome in cen-
timorgans (Kong et al. 2002). With the number of mark-
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ers we are considering in the present article (a minimum
of 10,000), when this distance is divided by 100 it also
approximates the recombination fraction between dis-
ease locus and marker locus when no interference is as-
sumed. If the disease locus is assumed to have alleles C
and c and if the nearest marker is assumed to have alleles
B and b (with the B allele associated with disease), the
frequency of the B allele on chromosomes carrying the
high-risk disease allele C can be found by

PB|C)=(1-60°+[1-(1-6° PB),

where G is the number of generations since the mutation
was introduced, 0 is the recombination fraction between
marker and disease locus, and P(B) is the frequency of
the B allele in the population. The frequency of the
B-C haplotype, P(B-C), can be found by P(B|C)P(C),
where P(C) is the frequency of the C allele. The expected
value of D' can be found as the difference between
P(B-C) and P(B)P(C), standardized by the maximum this
value could take, given the allele frequencies of C and
B. For example, if § = 0.0005 (corresponding to a den-
sity of 1 marker per 0.1 ¢cM, or 36,730 markers in a
genome of 3,673 ¢cM) and if P(C) = 0.1 and P(B) =
0.25, then the expected value of D’ for a population
with G = 500 is 0.78. The power of a genetic associ-
ation study can then be calculated using D', P(C), P(B),
the prevalence of the disease, and the GRR associated
with the CC and Cc genotypes (see Genetic Power Cal-
culator Web site) (Purcell et al. 2003). For all calcula-
tions, we used an « level of 0.0001, and, when calcu-
lating sample sizes, we assumed equal numbers of cases
and controls and a power level of 80%. Unless otherwise
specified, we set the following values: P(B) = 0.25,
P(C) = 0.10, prevalence of disease = 0.15, and GRRs
= 2.5 for both the CC and Cc genotypes. The assump-
tion of these values for P(B), P(C), GRR, and disease
prevalence results in genotype frequencies for the disease
and marker loci shown in table 1.

Table 1

Genotype Frequencies at the Disease and Marker Loci

FREQUENCY AT

BB/Bb with D' =

GROUP CC/Cc 9 .6 4 2
Case .02/.35 .09/.46 .08/.43 .08/.41 .07/.39
Control .01/.15 .06/.37 .06/.37 .06/.37 .06/.37

NOTE.—Genotype frequencies at the disease and marker locus when
P(C) (the frequency of the risk allele at disease locus) is .10, P(B) (the
frequency of the associated marker locus) is .25, disease prevalence is
.15, and GRRs associated with the CC and Cc genotypes are both
2.5. The genotype frequencies at the marker locus in cases depend on
the magnitude of LD between disease and marker; four sample values
of D' are presented.
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Figure 1 Power to detect a false null hypothesis at the 0.0001 « level versus number of markers. A sample size of 1,000 cases and controls

was used in all calculations. We assume the frequency of the disease mutation to be 0.10, the prevalence of the disease to be 0.15, the frequency
of the associated marker allele to be 0.25, and the GRR associated with disease allele homozygotes and heterozygotes to be 2.5.

We also applied our methodology to empirically de-
rived estimates of D'. We used the data of Reich et al.
(2001), who estimated pairwise values of D' between
SNP markers in 19 randomly selected genome regions
in a sample of 44 persons from an outbred U.S. pop-
ulation of northern European descent. Reich et al. found
a great deal of variability in estimates of D, both by
physical distance between markers and across genome
regions. We used their reported average values of phys-
ical distance in relation to D'. In estimating the number
of markers needed to cover the genome, at a density
specified by a given D’ value, we assume the genome is
3,000 Mb.

Results

Power in Relation to Population Depth

We first examined the relationship between marker
density and power for populations of four different
depths, equivalent to a recently founded isolate (20 gen-

erations), an older isolate (100 generations), and two
outbred populations (500 and 1,000 generations). For
all populations, sample sizes of 1,000 cases and controls
were used. We show the results of this analysis for a
single disease-variant frequency and associated SNP al-
lele frequency (fig. 1). As expected, an increase in the
marker density enhances the power to detect association.
In the younger populations, far fewer markers are
needed to obtain adequate power than in the older pop-
ulations. For all population depths, the increase in power
reaches a plateau as the numbers of markers increase;
however, this plateau occurs at very different points in
young populations (<5,000 markers) compared with old
populations (~600,000 markers).

Power in Relation to Sample Size

One can also increase power to detect association by
increasing the sample size. As shown in figure 2, for any
depth of population, one can identify alternative strat-
egies to obtain a specified level of power (in this case,
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Figure 2

Each line represents combinations of numbers of markers and numbers of cases and controls necessary to achieve 80% power

to reject a false null hypothesis at an a level of 0.0001. We assume the frequency of the disease mutation to be 0.10, the prevalence of the
disease to be 0.15, the frequency of the associated marker allele to be 0.25, and the GRR associated with disease allele homozygotes and

heterozygotes to be 2.5.

80%) on the basis of varying combinations of marker
density and sample size. For example, for the population
in which G = 1,000, one can achieve 80% power with
a sample of ~800 individuals (cases and controls) and
200,000 markers or with a sample of ~550 cases and
controls and 400,000 markers.

Optimization of Strategy in Terms of Cost

In determining whether the optimal study design in-
volves increasing the marker density or increasing the
sample size, one can estimate the cost to achieve a given
power. That is, one can estimate how expensive it is to
add one individual to the sample (case or control), com-
pared with the cost of genotyping one additional marker.
Although genotyping costs are essentially fixed for a
given genotyping platform, the costs of sample collection
are specific to particular projects, depending on such

variables as the cost of ascertainment in particular lo-
cales and the type of phenotyping that must be done.
For most projects these costs can be varied by altering
the study design, and it is possible to identify study de-
signs that minimize cost. For a given genotyping cost,
one can achieve 80% power through either of two strat-
egies: larger sample and fewer markers or a smaller
sample with more markers. Consider an example with
G of 500. To achieve 80% power with 12,243 markers
(corresponding to § = 0.0015 and D’ = 0.47, when
P[C] = 0.1 and P[B] = 0.25) requires 2,299 cases and
controls (scenario 1); with 36,370 (D’ = 0.78) markers,
this power level requires only 855 cases and controls
(scenario 2). Which is the cost-effective strategy? The
difference in cost of these two scenarios depends on the
cost to phenotype a case. Assume that determinations
of genotypes cost $0.10 each. We make two assumptions
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about the cost to ascertain/phenotype a control. In
one example, this cost is 25% of the cost to ascertain
and phenotype a case; in the other example, this cost
is the same as the cost to ascertain and phenotype a
case. In the first example, the cost of a study can be
calculated as N - (T + M - 0.10) + N - (T - 0.25 +
M - 0.10) , where N is the number of cases and controls,
M is the number of markers, and T'is the cost to ascertain
and phenotype a case. In the second example, the cost
of a study can be calculated as 2N - (T + M - 0.10). We
have calculated the difference in cost of these two sce-
narios for varying values of T (fig. 3). The point at which
the line crosses the X-axis in figure 3 determines the
value at which the cost of the two scenarios is equal.
The examples depicted in this figure show that, when
controls are 25% as expensive to phenotype as cases,
scenario 1 is more expensive than scenario 2 when the
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cost of collecting each case is >$327. We term the cost
depicted by this point the “threshold phenotyping cost.”
When cases and controls are equally expensive to phe-
notype, the threshold phenotyping cost decreases to
$205.

We evaluated how the threshold phenotyping cost
would vary in different populations, ranging from a
depth of 20 generations to a depth of 1,000 generations
(table 2). In each case, we compared a scenario with
10,000 markers and a scenario with 50,000 markers,
calculating the sample size needed to achieve power of
80%. We calculated threshold phenotyping costs under
the assumption that controls are 25% as expensive to
phenotype as cases and also under the assumption that
the cost of phenotyping the two groups is equal. In both
examples, the threshold phenotyping cost decreases pro-
gressively in the deeper populations. The threshold of
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Figure 3 Difference in cost for two scenarios versus the cost to phenotype a case. Scenario 1 uses 12,243 markers and 2,299 cases and

controls, scenario 2 uses 36,370 markers and 855 cases and controls. Two lines are plotted: one in which the cost to phenotype a control is
set at 25% of the cost to phenotype a case and the other in which the phenotyping costs for cases and controls are equal. When the cost per
case is less than $327 (and the cost for controls is 25% of that for cases) or $205 (and the costs for controls and cases are equal), it is less
expensive to genotype 12,243 markers in 2,299 persons; when the cost is >$327 ($205 when costs for cases and controls are equal), it is less

expensive to genotype 36,730 markers in 855 cases and controls.
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Threshold Phenotyping Costs for Various Population Depths

THRESHOLD PHENOTYPING
CosT WHEN

Control Cost = 25%

Control Cost = 100%

G N1 N2 of Case Cost of Case Cost
20 572 534 88,337 55210
100 758 572 18,082 11,301
500 3,157 758 422 264
1,000 19,350 1,085 0 0

NOTE.—NT1 is the sample size to achieve 80% power in the scenario in
which the number of markers = 10,000, and N2 is the sample size needed to
achieve 80% power in an alternative scenario in which the number of markers
= 50,000. As long as the cost to ascertain and phenotype a case is less than
the threshold cost, N1 and M1 represent the more cost-effective strategy.

zero in the oldest population (G = 1,000) indicates that,
given the assumptions we have made in this example, it
is more cost-effective to genotype a larger number of
markers than to add to the sample, regardless of the cost
of phenotyping each case.

We also modeled the effect on threshold costs of dif-
ferent values for variables that are unknown at the outset
of a study. Table 3 shows a range of threshold costs for
two such variables. First, we varied the frequency of the
SNP allele associated with disease susceptibility. Next
we varied the GRR associated with the CC and Cc ge-
notypes at the disease locus. In these scenarios, we used
the same assumptions as in table 2 (marker sets of
10,000 and 50,000 and the sample size needed to obtain
80% power). In table 3 we show the results for a single
population depth (G = 500), again with two examples
for the cost of phenotyping controls relative to the cost
of phenotyping cases. The threshold costs are lowest
with increasing marker allele frequencies and with de-
creasing values for GRR. This result reflects the fact that
there is generally greater power to detect association
when the frequency of the SNP allele is close to the
frequency of the disease allele (Garner and Slatkin 2003)
and the fact that there is greater power in a higher GRR.
However, the different values for these variables have a
relatively small effect on the threshold cost compared to
different values of population depth.

Empirically Derived Estimates of D/

Reich et al. (2001) found the average value of D’ to
be 0.65 for markers 0.04 Mb apart and 0.35 for markers
0.16 Mb apart. These physical distances correspond to
75,000 markers and 18,750 markers, respectively, for a
genome of 3,000 Mb. To calculate the sample size of
cases and controls needed to identify an association at
an «a level of 0.0001 with 80% power for these two
marker densities, we first assumed the same estimates
for P(C), disease prevalence, P(B), and GRR that we

specified in the “Methods” section. The sample size re-
quired for 75,000 markers was estimated to be 1,219
cases and controls, and for 18,750 markers it was es-
timated to be 4,107 cases and controls. When the cost
of phenotyping controls is assumed to be 25% of the
cost of phenotyping cases, the threshold phenotyping
cost is ~$800; with equal costs to phenotype cases and
controls, the threshold decreases to ~$500. When a
slightly stronger effect size (GRR = 3.0) is used, these
thresholds are increased slightly, to $826 and $526,
respectively.

Discussion

The results presented here show how several variables
interact to determine the costs of genomewide associa-
tion studies. These costs reflect different study design
strategies for achieving a specified power to detect as-
sociation. The examples that we used represent only a
few of the possible combinations of these variables. For
example, we recognize that there may be a wide range
of conceivable ratios for the cost of sampling and phe-
notyping cases compared with controls, depending on
the disease and population. The values that we used in
this analysis for the costs of collecting controls (25% of
the cost of collecting a case and 100% of the cost of
collecting a case) may be unrealistic in particular situ-
ations, and investigators may wish to consider other val-
ues for this variable. It is straightforward to employ
alternative values for any of the variables that we are
considering. The approach that we have employed there-
fore provides a framework for investigators to utilize
information regarding these variables that is specific to
their projects, in making cost-effective designs. For ex-
ample, a given investigator may have little choice re-
garding the study population but may have several dif-
ferent methods available for phenotyping. With a limited
budget in such a situation, phenotyping methods with
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Table 3
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Impact of Varying Marker Allele Frequencies and GRR Associated with Homozygous and

Heterozygous Genotypes at the Disease Locus

THRESHOLD PHENOTYPING COST WHEN

ALLELE Control Cost = 25%  Control Cost = 100%
FREQUENCY GRR N1 N2 of Case Cost of Case Cost

.05 2.5 2,463 649 689.75 431.09

.10 2.5 1,156 302 663.23 414.52

.20 2.5 2,407 587 464.18 290.19

.30 2.5 4,014 953 392.55 245.34

25 1.5 20,230 4,763 370.85 231.78

25 2.0 6,037 1,437 399.30 249.57

25 2.5 3,157 758 422.17 263.86

25 3.0 2,064 498 435.25 272.03

NOTE.—NT1 (N2) is the sample size of cases and controls necessary to achieve 80% power
with 10,000 (50,000) markers at an « level of .0001. This example is for G = 500.

different costs result in the ability to collect different
sample sizes, and, in turn, these different sample sizes
will require varying numbers of markers to achieve de-
sired power levels. By using our approach, investigators
can evaluate how the costs of these different phenotyping
methods may affect the design and ultimately success of
the study.

Of the variables that we have considered, the depth
of the study population produces perhaps the most dra-
matic effect on both cost and power. All of the examples
suggest that, for recently founded isolates, it may be
possible to conduct association studies with fewer mark-
ers, smaller sample sizes, and lower costs than in out-
bred populations. These observations are concordant
with the results of theoretical and empirical studies re-
garding the extent of LD in different populations (Reich
et al. 2001; Service et al. 2001; Angius et al. 2002; Hall
et al. 2002; Varilo et al. 2003). In addition, genomewide
association studies have already been performed in some
young isolates, using sets of ~1,000 microsatellite mark-
ers (whose information content is probably equivalent
to ~3,000-5,000 standard SNPs, based on average het-
erozygosity) (Ophoff et al. 2002; Vaessen et al. 2002).

The approach that we have presented represents a
first step in evaluation of the relationship between
power and cost in genetic association studies. The
framework we used requires assumptions about such
variables as the heterogeneity of the disease, the degree
of LD between disease and marker locus, or the fre-
quency of the marker allele associated with disease. In
particular, we made the simplifying assumption that the
extent of LD in a given population is uniform through-
out the genome and therefore that evenly spaced sets of
markers will be employed to achieve a set level of power.
We do not yet have an adequate theoretical framework
or empirical data set to incorporate into our analysis
such factors as variability between populations in the
size of haplotype blocks in particular regions of the

genome. When more data become available, it may be
useful to modify this framework to consider genome-
wide genotyping strategies that employ different spacing
of markers in blocks of low LD compared with blocks
of high LD. It will also likely be valuable to employ
methods for evaluating power that use either empirically
estimated or theoretically derived distributions for key
parameters in power calculations, to avoid making as-
sumptions about their values (Schork 2002). Regardless
of the method used to calculate power, the procedure
we describe can be applied to identify cost-effective
study designs.

The variability in the extent of LD across the genome
raises an additional issue for consideration in modifying
our approach, namely the uncertainty regarding how to
specify the level of statistical significance that is appro-
priate in estimating the power of a genomewide LD
study. In particular, the threshold for significance for
genomewide association studies must be adjusted for
the multiple independent comparisons that are involved.
Determining the precise number of such comparisons,
however, is complicated by the fact that the markers
used in these studies will demonstrate varying degrees
of LD with each other and are therefore neither fully
dependent nor fully independent. New methods for
correcting for multiple comparisons in genomewide
association studies may facilitate such determinations
(Sabatti et al., in press). The degree of independence of
the markers will vary between populations, and there-
fore it is probably not appropriate to suggest a single
significance threshold that should be used for cost-
power analyses, regardless of the population being con-
sidered. It may therefore be prudent for investigators to
consider a range of significance thresholds.

The calculations in the present article are based on a
very simple statistical test (a difference of two propor-
tions). Many other tests of association exist that are
more powerful. We chose this test as an example, simply
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because it is easy to calculate either the power for a
stated sample size or the sample size needed for a given
power. More powerful tests have more complicated dis-
tributions, and power is usually found by simulation.
For any given statistical test, there are likely to be several
combinations of sample size and marker density that
can produce similar powers; the more cost-effective
strategy can be determined for a given situation, and
this information can aid in study planning.
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